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Introduction

‘The results reported in this paper have been obtained in
collaboration with many colleagues and students, and it is
difficult for me to give adequate justice to their enthusiastic
and dedicated work. The least I may do here is to list their
contributions and have their generous help acknowledged by
name, as follows:

Acoustic Wave Scattering from Elastic Cylinders and
Spheres:

Dr. Joseph W. Dickey (NSRDC, ﬁnnapolis): Surface Wave Resonances

Dr. Larry Flax, Mr. Louis R. Dragonette (NRL, Washington): Breit-
Wigner Resonances

Dr. Jacob George (Catholic University): Resonances in trans-
mitted elastic waves

Acoustic Wave Scattering from Viscoelastic Spheres:

Dr. Guillermo C. Gaunaurd (NSWC White Oak), Dr. Larry Flax
(NRL Washington)

Acoustic Wave Scattering from Elastic Cylindrical Shells:

Dr. J. Diarmuid Murphy (CUA), Mr. Edward D. Breitenbach (NSRDC

Carderock)

Elastic Wave Scattering from Cylindrical Cavities:
Dr. Anton J. Haug (Johns Hopkins APL), Mr. Sheldon G. Solomon
(NSRDC Carderock)

Elastic Wave Scattering from Spherical Cavities:

Dr. Guillermo C. Gaunaurd (NSWC White 0Qak)




It will be shown in the following that the variety of

the mentioned scattering problems is essentially governed by
very similar phenomena, namely the resonant excitation of the

eigenvibrations of the scattering object, be that an elastic

body subject to an incident acoustic wave, or a fluid-filled
cavity in an elastic material exposed to compressional or
shear waves. These resonances often occur over a quite narrow
frequency interval (the width being proportional to the
imaginary part of the complex eigenfrequency of the body while
it is in contact with its surroundings), and in between the
eigenfrequencies, the scatterer behaves as if it could not
vibrate (the elastic object, e.g., as if it were rigid; the
fluid-filled cavity as if it were empty). This behavior of

the scattering object provides a continuous background to the

scattering amplitude, upon which the resonances are super-
‘mpoced, and with which they interfere in an often striking
and nnexpected manner.

When the scattering amplitude f is resolved into its

usual normal modes fn a la Rayleigh (also termed "partial
waves"), the set of eigenfrequencies in the nth partial wave
shifts to higher values as n 1is increased. The scattering
amplitude may thus be considered a function of two (continuous)
variables, W and n , which for given n has a pole in the

complex (W plane somewhat below the real w -axis, i.e. |
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thée pole being located at w= Wi(n) - % i I . The width [~
of the resonance is determined by the distance of the pole
below the real axis, %[ ( > 0). For a fixed frequency W,

fn(tu ) may be considered a function of n, and one may expand

wm)s win,)+ (n-my)w (n,) W'>o),

where one chooses n,, so that &)(ncu ) =W ., i.e. the fixed
incident frequency lies at the resonance peak when n =n ,6 .

Then, the amplitude

— A (F /26"
) —_— A -~
St o ey

appears with a pole in the complex n-plane, located at
~N

et W % i above the real n-axis since

F=r /win,) >o0.

In terms of the n-variable, this is known as a Regge polel,
and it shows that one and the same pole of the scattering
amplitude may appear as a resonance in the W as well as in
the n variable. If n is considered a parameter and W the

variable, the n dependence of the resonance frequency (J (n)

(1)

(2)

(3)

(4)
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in Eq. (1) causes a "Regge recurrence" of the one Regge pole
under consideration in all successive partial waves at success-
ively higher resonance freguencies, as will be demonstrated in
Sections 2 and further. 1In the following section, however, we
shall discuss the Regge pole aspects of the scattering ampli-
tude, Eq. (3), as it provides a physical picture of the scat-
tering process in terms of surface waves ("creeping" or "cir-

cumferential waves"), as well a physical explanation of the

mechanism of resonance excitation.
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I. Surface Waves in Acoustic Scattering from an

Elastic Cylinder

1) The Watson Transformation

An infinite plane acoustic wave exp i(kx - W t) of propa-
gation constant k =@ /c, incident along the x axis on a solid
elastic cylinder of radius a, produces at the position (r,cp )

of an observer located outside of the cylinder the total field

o 1
p= b e i™ (Ba/Du)cos g s

where E;n =1 (n =20), 2(n » 0). The guanticy

BB i b ol ) (5b)

tncludes contributions from the incident ( o< Jn) and the

scattered wave (X Hn(l)

). The 3 x 3 determinants bn and Dn'
’ ; ¥ 2.3 . A ' ;
given in the literature , contain cylinder functions with

arguments x = ka = W a/c , X kLa = wa/cL and

L

= kT a = &)a/cT . where cL . cT are the velocities of

long.tudinal (compressional) and transverse (shear) waves in |

the cylinder (of anSLLy'FC) respectively, given by

/C,_q.: (’\"'zf’“)/?c ’ /Ci i /L"“/Pc (5¢)

which depend on the Lamé elastic constants A and fi—.
Egq. (5a) is called the Rayleigh or normal mode series of

the scattering amplitude. It may be rewritten as a contour

integral by means of the Watson transformation2
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(P denoting the principal value at ¥ = 0), where the con£our C
surrounds tightly on the both sides the positive real axis.in
the y plane, and hence also the poles of the integrand at the

integers Y = n which are caused by the factor 1/sinTCV .

y ¢+ however, also has "Regge" poles located

The amplitude f
at complex positions Y = %ﬁ L£= 1, 2, ...) in the first quad-
k rant of the y-plane, as indicated in Eq. (3) if we replace
n->yY . The contour C may tgen be opened up to comprise
infinite portions C_, on which the integral can be shown to
vanish, as well as two finite portions Co and C' as shown‘in

Fig. 1, with CO surrounding the poles of fn. One then has for

the scattered field

ke L WA . (7)

wherec

L'} %

Py = L2 Pf_m__ S [ 1+ Z%_J Hy(i) (k) s (8)

ST Y
Co

(2)

s in Eg. (5b) having

%

‘ the contribution from the term o H
; ‘ vanished. The contribution of the "background integral" pI,
f similar to Eq. (8) but led over the contour €' , has been

shown to be small J and will be neglected.

The Regge poles V =V, of f , , Egq. (3), are determined

y p




by the zeros of D),. For the case of the aluminum cylinder
in water, these are shown schematically at some given frequency,
in Fig. 2, with classification labels to be discussed later on.

Splitting e into integrals over contours C1 and C2

(separated by a saddle point vs (see below), and applying
Imai's transformation
By (< ) ,(.‘Q‘\v(n-?)s“ TV
; &= cCOS Y -7C ) — n
COSVC]O £ o Sp (9)

to the integral over C2 serves to split off, via the second
term of Eg. (9), a geometricai part pg which no longer has
1/sin 7V in the integrand, and which will be evaluated at the
saddle point DS of Fig. 2, resulting in the specularly re-
flected wavez. (Additional saddle points in pg yield waves
which are transmitted through the cylinder, see Reference 3.)
The remaining integrals are evaluated in terms$ of the residues
at the poles of Fig. 2, with the residue series converging on

both the insonified and shadow sides of the cylinder4.

We then have
Pr = Fgt Py (10)
with a geometric contribution

Pg =zi_[ d\/ Ql'V(%”'kP)[ i—f%j?'\"—] HV {i)(l(r), (10a)
C »

S

and a residue contribution Pp = Py + Py split into two series




£ A (10b)
Re L . f
_ 9§ cosulem) corm by (1)
Pl—"Z‘(Z SimT Y Ql °\,L/V (kr))
iz ? e
(10c)-
Ke l,/é’ >V 5
where D, = 2D,/2vp .
4
The expansion in e.g. Eq. (10b) of the quantity
cos vy 2 v Dt )
14 < <V, bt S i o
SLEL S ,
Sl'nwi A=14Mm=0 (11)
together with the time factor exp(-i @ t) used by us shows
that each residue has the factor
A \ +)
R =t ) —pLm ¥ 4(1907\>€V—v~
e E =g TR v e
which reveals it to be an attenuated circumferential wave, or
"surface wave", with phase velocity
e = CZCL)//Fae Pk
fa £ (13)

Extensive numerical calculations of the positions of the
zeros of Dy, and of their trajectories (i.e. their motion

through the complex y-plane as one varies the value of x)
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6 1
have been made by us earliers. The results are shown schema-

tically in Fig. 2; examples of scale plots of the zero positions

are given elsewhere7'§ A series of "Franz (F) poles"y = VF.

all with large imaginary parts (i.e., high attenuations of the
corresponding surface waves) lies along a curve starting at
Yy = x and reaching towards the upper right; a single "Stoneley
(S) pole" Kg with very small imaginary part (which tends towards
the conventionally defined Stoneley polez'5 as ka »00 ) lies
slightly to the right of Y = x. The two corresponding types
of surface waves propagate in the fluidz, with phase velocites
close to that of a plane sound wave in the fluid, while the
following surface waves propagate in the elastic cylinder, with
phase velocites comparable to those of the elastic waves?$

A single "Rayleigh (R) pole" VR with moderately large
imaginary part (which tends towards the conventionally defined

’

Rayleigh pole on a flat half-space as ka »o0 ) lies near

vV =X and a series of "Whispering Gallery (WG) poles" y

Gt WG

with mall imaginary parcs trails towards the left from XT and

XL' (Note that the pcles in the second guadrant of the Vv -plane

do not contribute and are not enclosed in the contour Cl' since

they would give rise to surface waves that increase exponentially
with time). We have also located6 a few "unclassified poles"

near XL and X not shown in Fig. 2.

Tl
As ka increases, more poles move into the first quadrant

from left, rendering the pole series more dense and resulting




in a larger number of propagating circumferential wave modes.

In the limit of ka2 o0 (e.g., flat half-space limit), the
density of poles also tends to infinity, with the Whispering
Gallery pole series tending towards the lateral waves obtained

from a branch cut integralg.'

2) Surface Wave Resonances

We now show that the surface waves described by the scat-
tering amplitudes of Egs. (10b,c) contain Regge poles of the

form of Eq. (3). The é’th zero of Dv(aJ Yo
)? (e ) = Ko %?(Lu) + A4 Im E?(uJ) y

which is a function of the frequency, will at some "resonance
frequency" W = u)ne move past the integer n, so that

Re Y (w = n . In the vicinity of the resonance fre-

ng )
guency where E’z = /VL+5£ , and assuming Im ):L « 1, one has

4 A ___i___ T el

St L \/‘; {"i)m?f 9)//£ T );/f - Y-

A

I1f we now identify Re ‘? =n,, and Z%\Q =‘% - . then
Eg. (15) and hence the scattering amplitudes pl, p2 of Egs.(10b,
c) assume precisely the Regge pole form of Eg. (3). This shows
that as the incident frequency (J passes through the nth re-
sonance frequency of the ,fth surface wave cgme , the corres-

ponding surface wave goes through a resonance. This is illus-

(14)

(15)




=13
w . e . .
trated in Fig. 3, which shows on a logarithmic scale the con-
tribution to Ipll of the Rayleigh wave (£ =R) on an alumi-

num cylinder in water, for the case of back scattering (qo =7 ),

plotted vs. ka = W a/c. The narrow resonances which occur at

the values of ka = QA)nR a/c, and whose width is determined
by Im v% , are clearly visible.

It is not hard to explain the physical origin of these
resonances with the help of Eg. (11]). The latter shows that
for m = 0, two surface waves propagate in the counterclockwise
(,2 = 1) and in the clockwise'(:\ = -1) direction around the
cylinder, joined by other such waves with m > 0 that already
have encircled the cylinder m times previously (of course
with larger and larger attenuation since In/)? # 0), due to

the steady-state situation considered here. The wavelength is

given by
.:l b 2%711
% Re v (w) / e
x
and .t the resonance frequency W = &58 where Re }? = n, one

sees that exactly n wavelengths of the surface wave fit the
circumference of the target, and hence lead to a resonant rein-
forcement of the circumferential wave in the course of its re-

peated circumnavigations.

TR
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II. Modal Resonances and Resdnant Excitation

of Eigenvibrations.

We turn next to tﬁe resonances in the scattering amplitude
of the type of Eq. (1), written as a function of frequency W at
a fixed (real integer) mode number n. As is clear from the
introduction, these are really the same resonances as the
Regge poles of Eqg. (3), simply rewritten in a different variable.
In fact, the resonance amplitude could be represented as a two-
dimensional surface in a three-dimensional space, plotted over
the two axes W and n , and having on it a series of roughly
parallel ripples whose ridges run at an angle to either axis.
These ripples appear as a resonance in w if the surface is
sliced at n = const (Egq. 1), or as a resonance in n 1if the
surface is sliced at @ = const (Eg. 3). These W -resonances
will be illustrated below for the example of agoustic—wave
scattering from an elastic cylinder, and furﬁher on for other

examples of acoustic and elastic-wave scattering. They will

be ticated mathematically by the Breit-Wigner theoryll developed

for the resonances i1, nuclear scattering.

1) Acoustic Scattering from an Elastic Cylinder

We shall write the scattered portion of Eg. (5a) as

FSC s —:;— i EM'{"M (Sm '1)14%(1) (LY) Sk

m=o

(17)




where we introduced the scattering function Sn = exp (2i 3 n) {

of the nth mode, familiar from nuclear scattering theory with

} the scattering phase shift; here,
M

o d e 285D (18)

n

For a rigid cylinder, one has, incidenta11y12:

S e e s (19)

Let us consider the far-field value of Pyec by employing

the Hankel asymptotic form for krz>4x -

PN Jkr
£ e . (20)

i AT o 2 el )

and introduce the far-field scattering "form function"

f(‘f’) =Z fﬂ (¢), . (21) &

consisting of "partial wave" contributions
g9 P

1 .
1 : fa
] jf,nftf)—:. fﬂakc\) i g“(gm-—i)cos'nuf. ‘j
(22)
In terms of this, P becomes asymptotically
i .
N
,{)sc ~ (o /2r) © .f/\f’). (23)

Following Reference 3, the expression for S, may be repre-

sented as




J----"----------------..--------..-.----------'---.---l---.lllIIl-l“

=6
where, from Egq. (19), :
(2)/
S‘ oy Ha 4 - 2{Em (24b)
A e oy o g e =
Ho " ex) '1

represents the S-function for scattering from a rigid cylinder.

LN Vit

L e

The corresponding phase shift is
/ /
tenc = L g f B 1. (25)

We further used

((')/ ((‘) -
24':)( Um /H‘V‘- '(X) 4=il21
(26)

and defined the quantity

(1)
R W
Fatr) = 7 XT D (27)

a function of the normalized frequency x, with f%, ©w the

dersities of the cylinder and of the ambient fluid, respectively.

Further,
==y (&) IJ]: a‘}‘l -~ )y all al}
AR | D= 3 (28a)
P Ty Oy
= 2 - = 1L
? u,z" {XT —'ZV\L)J“()(L)+2)(L \)v\ (x[_),

Dan = Wy 1w )
(31))_: 2“[3—\(x‘_) —XL j—,\,(ll_)l)

5 (28Db)
s = LW L:L,(YT) ¢ XT-JkI()r)])

hl , , — w— | ———— : S
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al} = ™" J;‘ (Yr),
Aqq = (X-,—"‘J‘n" )Ta (xe+) # 2)(-,— I.\’ (X-r).

The quantities zi-l may be separated into real and imaginary

parts:

. 5 BCE LS (29)
We now employ13 the linear approximation method of nuclear
resonance theory, in which we define resonance frequencies
(r)

X, by the condition

F D (%) = A (x“f")), (30)

~

an eigenvalue equation with a multiplicity of solutions

(r = 1,2,3 ...). We expand Fn-l"éhvo assumed to be slowly
varying with frequency, in a Taylor series in x in the

vicinity of any of these resonance frequencies:

-4 ~ ()
T AER) S TR (o= 22 ). (31a)
4 " y & f'(f) o
We also introduce a "resonance width - by the definition
(+) v) '
P == 25 7 P (»0). (31b)

The S-function may be rewritten in the resonance form

2:3 R ¥4 Pl
Sewas T T a s S;‘”X e ; (32)

m

4 X=¥% s $a




) B

Note that due to the reality of the quantities involved, one

PRESEER N S PR VE SCENE ¥

has the "unitarity relations"

st =185 ) =1, fss)

expressing the fact that no energy is lost in the scattering

process. Furthermore, Sn is seen to possess not only a reson-

ance pole at the complex frequency

)(:-_)(‘“)—,—x““”—i{l_%, ' (3u4a) : 'g

cf Eq. (1), but also resonance zero at

LS (34b)

4%

~)
x - X;( ) x‘nlf) o

NP

necessary in order to satisfy the unitarity condition,
fhe quantity Sn--l 717 sch appears in the scettering ampli-

tude, Eq. (17), a)d which has the form

. PN
om=41 = 2i-e Siw o,
y ZCEW r S "".E«. (35a)
=2{e L -4 T S
Fy\ "A,.'i‘ S‘n

may be represented by the resonance expression

-1 2% 4 [ ) Ak
-—S————=e 5 l:Z 2 + 2 fSc‘nf.,‘:I. (35b)

y v 4 . v
y ~= X,.()-X-ztr;“
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The partial-wave form function

D)

a0 34‘ cosmep (36a)

-4/2 <
fm(\{p) L 21'8“ ('ﬂ'l\. k&) e

of Eq. (22) then becomes

_L\
+ e f"q‘“ ?“) Cosntp

(36b)

Y T L7,

where the second term in the brackets represents a rigid-cylinder
"potential scattering" background contribution, upon which a
number of resonances ( 2 ) are superimposed, and with which

+
they interfere.

This is illustrated in Fig. 4a where we plot l f; (“)l
from Egs. (22) and (24a) vs. x = ka, for a number of partial
waves n. In each amplitude, one recognizes a series of narrow
resonance features superimposed on a smooth background, which
is 7 1nd to be given by the scattering ampli£udes of the rigid
cylince In fact, if we subtract the rigid-cylinder scatter-

(0)

ing am~ litude fn r' from fn (7 ) and plot the resulting quan-
tity ifﬁ(n) — f“'Ln)| as shown in Fig. 4b, then essentially 4
only the resonance contribution appears and the widths of the
resonances can easily be determined.
The total form function f((? ), which is the physically

measured quantity, is given by Eq. (21). 1In Fig. 4c, we plot

J f (r)’ vs. X = ka and observe, comparing with Fig. 4a,

that all the resonances appear here simultaneously, which
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explains the extremely irregular appearance of the total form

function.

_—>
The displacement, field in the interior of the cylinder, 4 ,

may be represented in terms of two potentialsjf, A , in the

form

—~a = == :

If the corresponding solutions2 are subjected to the resonance

formalisml3, one find, e.qg.,

e o >°i £.47 Aay Jo(kryosmy sy

B TAQu W g 7 [Sh(') B s G
showing that the interior soluticn consists of pure resonances
without any background term. Since the resonances are narrow,
we find the important result that the external acoustic field
penetrates the cylinder only at frequencies near one of the
resonance frequencies, whilelitlle penetration into the interior
occur. n between the resonances, in agreement with Section III.

" p passing through a resonance, the phase of fn is ex-

pected to jump through 7T over a frequency interval of the

order fiw ; in fact, from Eq. (32) one finds

v
o (38)
2% =% )

34« = %:,\ * il
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which confirms this conclusion. Fig. 5.shows the phase

S;f 57 plotted modulo 27C above ]fhfﬂﬁ\ for n = 2. Here,
the linear behavior stems from ?w» , the superimposed jumps
of 2w from the resonances.

Returning to Figs. 4, we may discern families of resonances
labeled ,e= 1,2,3... whose members appear in all the partial
waves, shifting to higher frequencies from one partial wave
to the next (hence W'>0 , cf. Eq. (2)). They may be identi-
fied with the elastic surface-wave Regge poles shown in Fig. 2,
,@ = 1 representing the Rayleigh wave and _f = 2,3/.. the
Whispering Gallery waves. The partial-wave resonance families
are each a successive manifestation of one corresponding Regge
pole as it moves along its trajectory V = Vn (W) in the complex
v -plane when the frequency is being varied, appearing as a re-
sonance in lf“' as Re))n (u)nﬂ } = n.

The various, strikingly different shapes of the resonances
in Fig. a are explained by their interference with the back-
grouid. A pure resonance, e€.d. (n,,g ) =(2,3), appears if it
neari, coincides with a aull of the background. If it coincides
with a maximum of the background, e.g. (1,3), (3,3) or (5,2),

a total cancellation and thus a narrow hole occurs; in the
general case, e.g. (1,2), (2,2), the interference produces a

dip on one side and a peak on the other side of the resonance.

What, physically, causes the nth mode to resonate at its

eigenfrequencies () . ? To find out, let us study the pro-
M
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perties of the nth individual normal moae in Eg. (5a) ox
Eq. (17). Each mode is a multipole, with n = 0 the "breathing

mode" (where the pressure contours move radially in and out),

n 1 the dipole (contour motion is rigidly back and forth),

n 2 the quadrupole (contours oscillate between pro - and
oblate ellipses), etc., see Fig. 6a. All these motions repre-
sent standing waves, which may be resolved into a pair of waves
exp A (ifncf~ wt) traveling in the opposite sense, with modal phase
velocity cp(w) = aw/n(since n/a represents here the propagation
constant), and it is clear that for the nth mode, exactly n
wavelengths fit over the circumference of the body. This
property may be kaken as the physical characteristic of a normal
mode.

The above-discussed eigenfrequencies w = W, p of the
cylinder appear as a multiplicity )Zz 1,2,....0f eigenfrequen-
cies for each given mode n. This multiplicity represents the
possibility of various radial deformations of the pressure
coun: surs in the fluid, belonging to one and the same azimuthal
d>formation (the latter characterizing the mode uniquely).

For :>xample, the radial deformations of the pressure contours
for the breathing mode (n = 0) may occur uniformly radially
outward (,€= l), or outward near the cylinder but inward
further away, with one "node" in between (,E = 2), etc.

Eq. (13) now gives the phase velocity /Cp{ua) of the

A th surface wave (or Regge pole). Comparing with ¢, (Wi,




SO

we see that at the resonance frequency W = &Qe where Re?z = n,
these two phase velocities coincide. We may therefore state
that a cylinder resonance (n,,e ) occurs at that frequency where
the phase velocity of the/thlsurface wave coincides with the
nth modal phase velocity, as sketched in Fig. 6b. The multi-
plicity of resonance frequencies for one given mode is hence
explained naturally by the multiplicity of the existing surface

waves.

2) Acoustic Scattering from an Elastic Sphere.

The theory of this case is exactly analogous to that of
the cylinder, the essential difference being a replacement of
cylindrical by spherical Bessel, Hankel, etc. functions. With

an incident wave

\“(1’(05‘\9' s 4 ~ P -
]74‘“ = e :MZ;(Z”M)‘ ”‘7”\ (/(r) _L_n/ (60)19) (3‘3)
and . scattered wave
= (1) :
» =3 (zﬂ41§4’”(§“—1)£m1 (ke ) P, (cosd), (40)
nzo
one obtains an S-function }
« _-F-i—gl—i
‘jy = o> = AL . (41a)
% 7‘2”—1

where
(§ (%) l&:”(;\
I

(41Db)




corvesponds to the rigid sphere,

()7 n (1) .
‘24. = X% /ﬁﬂ (X)//-(ZM (X) ) (=1, 2) (41c)
and Fn is given by Hicklingl4. The form function of the
nth partial wave is found as
L 4‘5,.“ N 3 - .
f“ (5) = (2/ka) (2med) € A S, I (cosd) (42a)

A

) 4 2 0v)
«V_X_:‘r;r

o %; (D 4 )_e')_«' ?x[_)‘:_— .,,'L:‘e‘{?k s ?‘:&P’n ((059)
e X ,

(42b)

using the same rcsonance formalism as before. A number of
partial waves (fi (W 5! using Egq. (4la) is plotted in Fig. 7,

showing the corresponding resonances interfering with the rigid

background.

3) Acoustic Scattering from an Elastic Cylindrical Shell,

The theory of this case may here be taken over directly
from that of the cylinder, with only the replacement of Dn and
bn by corresponding 6 x 6 determinants for the shell which are
given in the literaturels. We here plot16 in Fig. 8.several
partial-wave form functions [fﬁ hﬁf for an air-filled aluminum
shell in water, for various b/a (inner to outer-radius) ratios.
Besides a shift of the resonances as compared to Fig. 4a, we
also note that between b/a =0.90 and 0.975, the background

changes over from that of a rigid cylinder to gﬁat of a soft




cylinder surrounded by a negligible amount of shell material.

4) Elastic Wave Scattering from a Cylindrical Cavity.

The elastic waves incident on a fluid-filled cavity in
an elastic body of density © are again described by a scalar
=ty
and a vector potential Y , A as in Eq. (37a). For a com-
pressional wave incident on a cylindrical cavity,

W =57 8 d™ b)) s

M=

(]

one has the scattered waves

e T

Base= ) oy aepha 7D HLY e ) stamd

the latter corresponding to mode conversion into a scattered

shear ~vyave. In the interior fiuid, one has
oD
G - > — 0
O W S - R RO R R T
n=o

where kF = Q)/CF, cF being the sound velocity in the fluid
(of density G%. ). The boundary conditions at the cylinder
radius r = a determine the coefficients an, bn' cn and Dn in
the form of 3 x 3 determinants composed of cylinder functions

Introducing two elements of the 2 x 2 scattering

matrix Sn by

(43a)

(43b)

(43c)

(434d)




B 4w 2a, B,

sl (44)
e = 4. B
end using the asymptotic forms of Hil) (kL,Tr)’ the asymptotic
potentials are found as
oD
o peistRe S el
m=9 (45)
R R e A
"n=9
with partial-wave scattering amplitudes
% —4/0 PP
/TPM il (27"{ LL) S (g,,\ -i) COS'n'S',
i’»\?s = (2"\‘{ \LT>_UL IS gﬂ?s Sin '7119'. o
A very similar analysis can be performed for the case of an
incident shear wavela, which yields corresponding matrix
elcmoents SnSP ’ Sngj, completing the 2 x 2'scattering matrix
S'M?P gm?s‘
5‘,,‘ = o 3P ~ SS : (47a)

>, o

Unlike the case of acoustic scattering where Eq. (33) applied,

| o PP
onc no longer has IEL 1 =3 etc., but energy conservation

only requires the overall scattering matrix Sn to be unitary,

if 5‘41 e sk SR, : (47D)

due to the existence of mode conversion in the present case.
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If we define the guantities

5 )= = il St (48a)
FRp s e
~m 7
OF Jo (X5)
2 L
—%1 = _é XT (.Dii‘D;l =) D11D31 )/(D21 D;J— DZ?— ‘DSJ-)
== A'r\ + A-SM (48b)
where Di' are the elements of pn, and further similar quanti-
. = . . .
ties Z, and z,, as well as the empty-cavity limits ( ?F~’O )
of the S matrix elements
S( (o) PP 2 T
- =.
~ (49)
sl RS 2< ¥
o e
etc., (with E;\\ Egnﬂ complex due to Eqg. (47b5 ), we obtain
ke 20 O - e
DS § & NEE R A - T (50a)
4 > Z\'r - =l o A
S 7%y = eal imen )/ B e 24 TRt
g (50b)
~ ? 2; ~ o s
37 2 E [ Gran/m-T il

The resonance theory now defines again the multiplicity




4 (ns)

1 of resonance frequencies X, for the nth partial wave
E (labeled s = 1, 2, 3 ...) as the multiple solutions of the
eigenvalue equation

('nS)) = A X (ms)
ST e (51a)

(corresponding to the eigenfrequencies of the fluid-filled

cavity), and expands Fn(xL) — A, around these:

_Er\ (%, ) —-A%(XL) = Fh:” o XL(-\s\) . (51b)

With a definition of the widths

~.

r () o 25’» /F’M(S) (52)

and of the further quantities

g (2,- 22 )/F’“(S)

(53a)

% (S)

A = (2,- 2, )/[3“(5) i (53b)

the resonance expressions for the S-matrix elements

A (S)
'21 s sl el
g’:?_ i = 3 [ epreT + 2ie $x Sim Sm] (54a) ~
ne ~— (S
s=1 )( )( 40 4
S _ 27 E“D___ /%‘” ]
S + 4
ns) S (sub)
m sed x ~X (ns +i/:\(” :




: : PP, S’ 5} Mg
are obtained. We then recognize fn g ( ) as consisting

of background terms corresponding to the empty-cavity scatter-

ing amplitudes, with a series of superimposed resonance ampli-

tudes which will interfere with the background.Littlepenetration
of the field into the cavity will occur for frequencies in be-

tween the resonance frequencies.

For the example of a water-filled cylindrical cavity in
an aluminum body, using Egs. (50), we have plotted the quanti-
ties q */* (thP (n)\ and 0:‘/2'{:3('\3)/51.717119" vs. x for the
partial waves n = 0 through 4, as shown in Figs. 9a and 9b,
respectively. These figures show the empty-cavity background
with superimposed (interfering) narrow resonances, which corres-
pond to the excitation of the eigenvibrations of the fluid
within the elastic walls (they disappear if one lets g&—ao )i
The eigenfrequencies of the fluid, i.e., the‘roots of Dn(xL) = 0,
are given in the 1iterature19, and their real parts agree
exactly with the resonance positions in our figures (which,
naturally, are the same for fnPP and fnps).

Reference 19 also lists a different set of eigenfrequencies
of the cavity which corresponds to vibrations of the walls,
rather than of the interior fluid. These do not appear as
resonances in Fig. 9, hence are believed to be only weakly
excited in our scattering problem. Their excitation does take

place, however, as shown for the pulse problem of the spherical

20

cavity by Norwood and Miklowitz

, where excitations of Rayleigh
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and Franz waves in the cavity walls have been identified. This
refers to the evacuated cavity, where wall motions are the only
modes of vibration. (The corresponding wall resonances form
part of our soft background amplitude.) Similar studies for
the evacuated cylindrical cavity have been performed by
Miklowitz and Peck21,

For each partial wave n, the resonances are labeled by
s =1, 2, 3 ... ("fundamental" s = 1, and "overtones" s = 2, 3 .,.).
Fig. 9 shows that for a given type of vibration s, the corres-
ponding resonance shifts to successively higher frequency values
as one progresses upwards through successive partial waves.
(The>background shifts similarly but even more rapidly). As
before, the sth resonances throughout all the partial waves are
caused by a single (the sth) Regge pole in the scattering
amplitude, corresponding to the sth zero of the denominator Dn(xL)
with n treated as a continuous complex variable, and with X,
a real frequency. In Fig, 9, the trajectory of each Regge pole
may be followed succesively through the progression of partial
wav. -, where the po.e becomes physically manifest at the integer
values of n.

Elastic wcve cattering from a Spherical Cavity

An investigatior similar to the one described above is in
progress for the case of a fluid-filled spherical cavity
(G.C., Gaunaurd and H, ﬁberall, J. Acoust., Soc, Amer,, to be

published); it also takes into account absorption in the external

medium. This is treated by making the propagation constants of




the medium complex,

K o = B3 (L4 Bsd (55a)

| /

and writing
. — F+ 2F (2 <
P ( a1/ Bz, (55b)
= by / L2e e,

as suggested by the Kelvin-Voigt model of viscoelasticity in
the limit of weak absorption.

Figs. 10 show preliminary results of this investigation.
Fig. l0a presents the moduli of the n=0 and n=1 spherical partial
wave amplitudes lfnppl for a water-filled spherical cavity in
non-absorptive aluminum (first row), the soft background
amplitude moduli (second row), and the water resonance moduli
obtained by subtracting the background from each partial wave
ampli.ude (third row)., Fig. 10b shows the corresponding results
for t > mode-converted fPS amplitudes. Finally, Fig, 10c presents
|fnPP| with n=0 and 1 for an air-filled spherical cavity in
rub! ™e f 23t o of the figure refers to non-absorptive

rubber (F=F.=0), the second (F=F =107 dyn/cmz) and third row

1 1
(F=“,=109 dyn/cmz) to absorptive rubber. The following observations
can oe made: |
(a) Apart from the well-known giant monopole (n=0) resonance/
of the (evacuated or air-filled) spherical cavity in rubber,
all 1:.sonances are exceedingly narrow. In fact, only the n=1
non-absorptive resonances, obtained with 10 times finer numerical

resolution than the other parts of the figure, appear accurately




in Fig. 1l0c.

(b) Absorption seems to mainly affect the background
amplitude only, which is logical since the latter refers to
the evacuated cavity, thus stems from the (absorptive) walls

exclusively. The effect of absorption consists in a filling-in

of the zeros of the background of amplitude.

———— R— s
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III. Conclusion

A study has been performed of the resonances excited in
an elastic body by incident acoustic waves, and in a fluid-
filled cavity by incident elastic waves. The resonances are
caused by Regge poles in the scattering amplitude, and they
may be studied either as a function of frequency w for a given
mode number n (partial wave or modal resonances), or as a
function of mode number (in the complex n -y plane) for a
given frequency W . 1In the latter case, the resonances have
been investigated by means of‘the Sommerfeld-Watson transforma-
tion, and in the former case, by means of the Breit-Wigner re-
sonance theory of nuclear scattering. Application of this
theory to the present topics serves to indicate the basic
similarity between scattering problems in various branches of
Physics, which may be further illustrated by a recent interpre-

NN

of the nuclear giant multipole resonances in terms of

-
-
@)

«jc . pnles using the methods of the Introduction.

scatering rescnances have been identified with the
eigenvibrations of the scatterer, and physical arguments have
bee, presented for the causes of the resonant excitations of
these eigenvibrations: i.e., a resonant reinforcement in the
repeated circumnavigations of surface waves. We also found that
in bet /een the resonance frequencies, the scattering object
appears impenetrable and provides the corresponding non-resonant

background of an impenetrable body to the scattering amplitude.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Schematic positions of Regge poles for an aluminum

T

Figure Captions

Contours in the complex V -plane used for the Watson

Transformation

cylinder in water, and splitting of contours. Pole

positions labeled Ve (Rayleigh pole), ¥Y_ (Stoneley),

S

Y r (Franz), » (Whispering Gallery poles), and

WG
saddlepoint Vgr
Pressure amplitude radiated by the Rayleigh wave on
an aluminum cylinder in water towards an observer,

located in the backward direction ( $=7 ) at a

distance r = 10a, plotted vs. ka.

(a) Partial wave backscattering amplitude moduli Ifn(wﬂ
for an aluminum cylinder in water, plotted vs., ka for the
first six partial waves (n = 0 to 5). Positions of the
eigenfrequencies are labeled by ( £ ) in each partial

wave

(b) Modulus of n =2 partial wave backscattering ampli-

tude wit.. rigid background subtracted, [f2(7T ) - fzrlg(n’)l
]

for aluminum cylinder in water
(c) Total backscattering amplitude modulus, |[f(7 )|,
for aluminum cylinder in water. Resonances are labeled

by (n,/f Y




Fig. S

Fig. 6

Figs 7

Fig. 8

Fige 9

Phase moal 2 7T (top) and modulus (bottom) of n=2

partial-wave scattering amplitude for an aluminum

cylinder in water

(a) Pressure contours for multipoles n=0 through 3

(b) Travelling-wave pair of nth (here sketched as 2nd)

normal mode, and surface waves L.
Same as Fig. 4(a), for an aluminum sphere in water

(a) Moduli of n=0 and 1 partial-wave scattering ampli-
tudes for an air-filled cylindrical aluminum shell
in water, for inner-to-outer radius ratio b/a = 0.900,.

Rigid background is shown as a dashed line.

(b) Same as (a) for b/a = 0,975, with rigid (dashed)

and soft (dotted) amplitude indicated

(c) Same as (a) for b/a = 0,995, Soft background is

shown as a dotted line

(d) Modulus of nth partial wave (n=0,1,2) scattering
amplitude for air-filled cylindrical aluminum shell
in ¢ ~er with rigid background subtracted, for

b'a = v.600

(e) Same as (d) with soft background subtracted, for
b/a = 0.995. Note the giant n=0 ("bubble") reso-
nance at very low ka.

(a) Modulus of normalized backscattering amplitude

a-l/2|fnpp(w0 | vs. x , of compressional wave

incident on water-filled cylindrical cavity in

aluminum, for partial waves n=0 through 4. Reso-
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nances at the fundamental eigenfrequencies of

the water content of the cavity are labeled by

s = 1, and at the overtones by s = 2, 3, ..,
(b) Same as (a), for the mode-converted scattering

amplitude a'l/zlfnps (%) /sin n |,

Fig. 10 (a) Modulus of backscattering amplitude |fnPP| D
| X of compressional wave incident on water-filled
spherical cavity in aluminum, for partial-waves
n = 0 and 1(first row): corresponding soft back-
ground (second row), and modulus of total ampli-

tude (third row) less background.

(b) Same as Fig. 10(a), for |fnPSl

PP

() |£f

| vs. x| for compressional wave incident on
air-filled spherical cavity in rubber, for partial
waves n = 0 and 1, with no absorption (first row),

and absorption levels F=F =107 dyn/cmz and 109 dyn/cm2

i
(second and third row, respectively),
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